Robust reconstruction of aliased data using autoregressive spectral estimates

نویسندگان

  • Mostafa Naghizadeh
  • Mauricio D. Sacchi
چکیده

Autoregressive modeling is used to estimate the spectrum of aliased data. A region of spectral support is determined by identifying the location of peaks in the estimated spatial spectrum of the data. This information is used to pose a Fourier reconstruction problem that inverts for a few dominant wavenumbers that are required to model the data. Synthetic and real data examples are used to illustrate the method. In particular, we show that the proposed method can accurately reconstruct aliased data and data with gaps. INTRODUCTION During recent years, interpolation and reconstruction of seismic data has become an important topic for the seismic processing community. In general, logistic and economic constraints dictate the spatial sampling of seismic surveys. Wave fields are continuous, in other words, seismic energy reaches the surface of the earth everywhere in our area of study. The process of acquisition records a finite number of spatial samples of the continuous wave field generated by a finite number of sources. The latter leads to a regular or irregular distribution of sources and receivers. Many important techniques for removing coherent noise and imaging the earth interior have stringent sampling requirements which are often not met in real surveys. In order to avoid information losses, the data should be sampled according to the Nyquist criterion (Vermeer, 1990). When this criterion is not honored, reconstruction can be used to recover the data to a denser distribution of sources and receivers and mimic a properly sampled survey (Liu, 2004). Seismic data reconstruction via signal processing approaches is a topic of current research interest in exploration seismology. During the last decade, important advances have been made in this area. Nowadays, signal processing reconstruction algorithms based on Fourier synthesis operators can cope with multidimensional sampling as demonstrated by several authors (Duijndam et al. , 1999; Liu et al. , 2004; Zwartjes and Gisolf, 2006; Schonewille et al. , 2009). These methods are based on signal processing principles, they do not require information about the subsurface and, in addition, are quite robust in situations were the optimality condition under which they were designed are not completely satisfied (Trad, 2009). Signal processing methods for seismic data reconstruction often rely on transforming the data to other domains. The latter can be achieved via the Fourier transform (Sacchi and Ulrych, 1996; Sacchi et al. , 1998; Duijndam et al. , 1999; Liu et al. , 2004; Xu et al. , 2005; Zwartjes and Gisolf, 2006), the Radon transform (Darche, 1990; Verschuur and Kabir, 1995; Trad et al. , 2002), the local Radon transform (Sacchi et al. , 2004; Wang Robust reconstruction of aliased data

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust-Resistant Spectral Analysis

Conventional spectrum estimates of both the smoothedperiodogram and autoregressive variety lack robustness toward outliers in the original data. Outliers and other local perturbations are modeled by non-Gaussian additive noise, which is zero most of the time. Correspondingly, the lack of robustness of the conventional estimates of the spectrum manifest not only inflated variances but also damag...

متن کامل

Robust Estimation of Nonstationary, Fractionally Integrated, Autoregressive, Stochastic Volatility

Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance—but still mean reverting—behavior is commonly found with nonparametric estimates of the fractional differencing parameter d, for financial volatility. In this paper, a fully parametric Bayesian estimator, rob...

متن کامل

Detecting periodicity in experimental data using linear modeling techniques

Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect periodicities in experimental data in the physical and biological sciences. We propose a method which is more reliable than traditional techniques, and is able to make clear identification of periodic behavior when traditional techniques do not. This technique is based on an informat...

متن کامل

Bayesian image reconstruction from partial image and aliased spectral intensity data

An image reconstruction problem motivated by X-ray fiber diffraction analysis is considered. The experimental data are sums of the squares of the amplitudes of particular sets of Fourier coefficients of the electron density, and a part of the electron density is known. The image reconstruction problem is to estimate the unknown part of the electron density, the "image." A Bayesian approach is t...

متن کامل

Spectral Reconstruction of Blacks and Whites by Using the Statistical Colorants

In this paper, the spectral dimensions of two sets of samples including 457 black and 84 white fabrics are compared. White fabrics are treated with variety of fluorescent whitening agents and the blacks are fabrics that dyed with different combinations of suitable dyes and pigments. In this way, the reflectance spectra of blacks as well as the total radiance factors of whites are compressed in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010